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The Brans-Dicke (BD) theory admits de Sitter spacetime as a solution with 
�9 | . 

an equatmn of state p = ~p when the couphng constant co of the BD theory 
is -3 /2 .  

1. INTRODUCTION 

It is now generally accepted that inflation is the embryonic phase in the 
evolution of the observable universe. In standard classical cosmology there 
is no model for the phase transitions associated with the inflation. One 
drives the inflation by a symmetry-breaking phase transition, based upon the 
dynamical evolution of a very weakly coupled scalar field displaced from 
the minimum of its potential. 

As the cosmological symmetry-breaking phase transition is not essential 
for the inflation, one can associate growing instabilities of a cosmological 
model with the phase transitions. In this context the Brans-Dicke theory is 
a better candidate for the de Sitter spacetime, as it is unstable (Berman, 
1989a). There exist some interesting vacuum solutions (O'Hanlon and 
Tupper, 1972) in the de Sitter spacetime that can be related to the inflation- 
ary phase. If one assumes that in the early universe, the scalar field in the 
BD theory is the dominant field, i.e., the Newtonian constant G is negligibly 
small, the dynamics of the scalar field might be associated with the exponen- 
tial expansion of the universe. 
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Mclntosh (1973) gave two particular time-dependent solutions for o9 = 
I 0 and co = - ~ ,  where co is BD coupling constant. However, his solutions do 

not correspond to a perfect fluid with known equation of  state. Later Berman 
and Sore (1989) and Berman (1989b) obtained solutions with de Sitter space- 
time, but their solutions are not valid for radiation or incoherent dust. 

In the present paper, we consider the dynamics of  the scalar field of  the 
BD theory when it is comparable to the radiation field (p = �89 It is found 
that the BD theory admits an exponential solution of  the de Sitter type when 
the coupling constant assumes the special value o9 = - 3 / 2 .  Such a solution 
might be relevant in the very early universe when the matter content is 
ultrarelativistic and the equation of state can be approximated by that of  
the radiation field. 

2. BD FIELD EQUATIONS 

The field equations of the BD theory are given by 

(1) + 

where 

T ~  = (p  + p )  U u U~ + S~p  (2) 

and 

(3) 

The energy-momentum tensor T~ obeys the usual conservation law 

P T v ;~ = 0 (4) 

The scalar field ~b is assumed to obey a field equation 

(3 + 2o9) [~2~b = T~t. (5) 

We consider q~ = ~b (r, t) in the homogeneous and isotropic Rober tson-  
Walker spacetime given by 

ds 2 = - d t  2 - R 2(0  (dr 2 + r 2 dO 2 + r 2 sin 2 0 d~b 2) (6) 

A straightforward calculation, using (2), gives the time-time component 
of equation (1) as 

3(/~/R) 2 = O/q~ + (o9/2q~ 2) [q~2 + (~b ')2/R21 - 1/~b 

x [3(R/R)q~- 1/R2(24~ ' / r +  c~ ")] (7) 
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while the space-space component of equation (1) gives 

2 R / R  + (R /R)  z = -P/00 - (co/200 2)[~2 + (00 ,)2/R2 ] _ 1/4 

x [~ + 2R/RqJ - 2r ' / rR 21 (8) 

2 R / R  + (R /R)  z = -p/00 - (co/200 2)[q{2 _ (00 ,)2/R 2 ] _ 1/r  

• [r + 2R/Rc) - 1 /R 2(00 '/r + 00) ")] (9) 

The spacetirne component of equation (1) gives 

cogp00 ' + r ( - k / R 0 0  ') = o ( l o )  

where 

q~ = ~r  and 00' - ~00 
~t ~t 

The field equation for 00 reads 

( 3+2co ) [ (0 0 "+2 0 0 ' / r ) /R2 - ( / b '+3k /R (~ ) ]=3p-p  (11) 

and the conservation law (4) gives 

~ =  - 3 R / R ( p + p )  (12) 

When 00#0, equation (I0) can be written as 

co ~b/00 + ~'/00' = R / R  (1 3) 

Subtracting (8) from (9) yields 

00"/p+co00 '/00= 1/r (14) 

From equations (13) and (14) one obtains the general solution (O'Hanlon 
and Tupper, 1972) 

00 = {(co + 1)[Ar2R(t) + B(t)]} l/~o,+ ~ (15) 

where A is an arbitrary constant and B(t) is an arbitrary function of (t). It 
is interesting to note that (15) was obtained earlier by O'Hanlon and Tupper 
(1 972) in the context of  vacuum-field solutions, but, as we have shown, it is 
valid in the general case. 

3. RADIATION FIELD 

For the radiation field one obtains 

(3 +2co) [D2r (16) 
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I f  co ~ - 3 / 2  one obtains vacuum solutions (O'Hanlon and Tupper, 1972) in 
de Sitter spacetime for co = - 4 / 3 .  I f  co = - 3 / 2 ,  the constant A and the func- 
tion B(t) of  (15) are to be determined from equations (7)-(9). Equation 
(12) rules out (15) as a solution for R / R = H ,  where H is a constant. 

We consider now 4~ = q~ (t) and take 

~ = A p  (16') 

Since ~b'=0, equation (10) is identically satisfied. F rom (12) one obtains, 
using (16') and p = gp, 

~/~b = -4( /~ /R)  (17) 

Substituting (17) in (7) and (8) gives, with -co = - 3 / 2 ,  

3 ( k / R ) 2 = A  (18) 

2k/R + ( R / R )  2 = - 1/3A + 4 ( k / R )  2 (19) 

Combining (18) and (19), one obtains 

R / R  = (/~/R) 2 = n (20) 

Equation (20) is the well-known de Sitter spacetime. 

4. CONCLUSION 

We have shown that in the BD theory the homogeneous scalar field q~ 
is the inflation field for the coupling constant c0 = - 3 / 2  even in the presence 
of the radiation field. In the very early universe, the matter content is 
approximated as an ideal gas composed of  ultrarelativistic particles. An 
equation of state identical to that of the radiation field (p = �89 is an accept- 
able equation of  state for not too high a density. For  such a gas, the de 
Sitter spacetime is a natural solution of the BD field equations. 
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